1. Course Structure

Assumptions with reasons and learning/reasoning.

Half half.

s06100201222024
s06101801222024
s06103701222024

2. Basic Assumptions for Efficient Model Representation

  • Independence: limit the number of interaction.
  • Interaction: restrict the way things interact with each other.

2.1. Independence

s06154101222024
s06164401222024
s06302201222024

2.2. Interaction

s06310101222024

3. Additional Material

3.1. Sensitivityu and Specificity

  • Sensitivity: True Positive
  • Specificity: True Negtive

Simply another way saying the same thing.

敏感性(Sensitivity)与特异性(Specificity)

3.2. Bayes’ rule

$$
P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}
$$

$$
P(y=1|x=1) = \frac{P(x=1|y=1) \cdot P(y=1)}{P(x=1)}
$$

s05580801222024


🍀后记🍀
Hello米娜桑,这里是英国留学中的杨丝儿。我的博客的关键词集中在编程、算法、机器人、人工智能、数学等等,持续高质量输出中。
🌸唠嗑QQ群兔叽の魔术工房 (942848525)
⭐B站账号白拾Official(活跃于知识区和动画区)
✨GitHub主页YangSierCode000(工程文件)
⛳Discord社区AIerLab(科研社区,欢迎来玩)