1. Course Structure
Assumptions with reasons and learning/reasoning.
Half half.
s06100201222024

s06101801222024

s06103701222024
2. Basic Assumptions for Efficient Model Representation
- Independence: limit the number of interaction.
- Interaction: restrict the way things interact with each other.
2.1. Independence
s06154101222024

s06164401222024

s06302201222024
2.2. Interaction
s06310101222024
3. Additional Material
3.1. Sensitivityu and Specificity
- Sensitivity: True Positive
- Specificity: True Negtive
Simply another way saying the same thing.
敏感性 (Sensitivity) 与特异性 (Specificity)
3.2. Bayes’ rule
$$
P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}
$$
$$
P(y=1|x=1) = \frac{P(x=1|y=1) \cdot P(y=1)}{P(x=1)}
$$
s05580801222024
🍀后记🍀
Hello 米娜桑,这里是英国留学中的杨丝儿。我的博客的关键词集中在编程、算法、机器人、人工智能、数学等等,持续高质量输出中。
🌸唠嗑 QQ 群:兔叽の魔术工房 (942848525)
⭐B 站账号:白拾 Official(活跃于知识区和动画区)
✨GitHub 主页:YangSierCode000(工程文件)
⛳Discord 社区:AIerLab(科研社区,欢迎来玩)
It has been 387 days since the last update, the content of the article may be outdated.