| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 
 | import paddleimport paddle.fluid as fluid
 import numpy
 import sys
 import os
 from multiprocessing import cpu_count
 import time
 import matplotlib.pyplot as plt
 
 def train_mapper(sample):
 """
 根据传入的样本数据(一行文本)读取图片数据并返回
 :param sample: 元组,格式为(图片路径,类别)
 :return:返回图像数据、类别
 """
 img, label = sample
 if not os.path.exists(img):
 print(img, "图片不存在")
 
 
 img = paddle.dataset.image.load_image(img)
 
 img = paddle.dataset.image.simple_transform(im=img,
 resize_size=128,
 crop_size=128,
 is_color=True,
 is_train=True)
 
 img = img.astype("float32") / 255.0
 return img, label
 
 
 def train_r(train_list, buffered_size=1024):
 def reader():
 with open(train_list, "r") as f:
 lines = [line.strip() for line in f]
 for line in lines:
 
 img_path, lab = line.replace("\n","").split("\t")
 yield img_path, int(lab)
 return paddle.reader.xmap_readers(train_mapper,
 reader,
 cpu_count(),
 buffered_size)
 
 
 
 
 def convolution_neural_network(image, type_size):
 """
 创建CNN
 :param image: 图像数据
 :param type_size: 输出类别数量
 :return: 分类概率
 """
 
 conv_pool_1 = fluid.nets.simple_img_conv_pool(input=image,
 filter_size=3,
 num_filters=32,
 pool_size=2,
 pool_stride=2,
 act="relu")
 drop = fluid.layers.dropout(x=conv_pool_1, dropout_prob=0.5)
 
 
 conv_pool_2 = fluid.nets.simple_img_conv_pool(input=drop,
 filter_size=3,
 num_filters=64,
 pool_size=2,
 pool_stride=2,
 act="relu")
 drop = fluid.layers.dropout(x=conv_pool_2, dropout_prob=0.5)
 
 
 conv_pool_3 = fluid.nets.simple_img_conv_pool(input=drop,
 filter_size=3,
 num_filters=64,
 pool_size=2,
 pool_stride=2,
 act="relu")
 drop = fluid.layers.dropout(x=conv_pool_3, dropout_prob=0.5)
 
 
 fc = fluid.layers.fc(input=drop, size=512, act="relu")
 
 drop = fluid.layers.dropout(x=fc, dropout_prob=0.5)
 
 predict = fluid.layers.fc(input=drop,
 size=type_size,
 act="softmax")
 return predict
 
 
 
 BATCH_SIZE = 32
 trainer_reader = train_r(train_list=train_file_path)
 random_train_reader = paddle.reader.shuffle(reader=trainer_reader,
 buf_size=1300)
 batch_train_reader = paddle.batch(random_train_reader,
 batch_size=BATCH_SIZE)
 
 image = fluid.layers.data(name="image", shape=[3, 128, 128], dtype="float32")
 label = fluid.layers.data(name="label", shape=[1], dtype="int64")
 
 
 predict = convolution_neural_network(image=image, type_size=5)
 
 cost = fluid.layers.cross_entropy(input=predict,
 label=label)
 avg_cost = fluid.layers.mean(cost)
 
 accuracy = fluid.layers.accuracy(input=predict,
 label=label)
 
 optimizer = fluid.optimizer.Adam(learning_rate=0.001)
 optimizer.minimize(avg_cost)
 
 
 
 place = fluid.CUDAPlace(0)
 exe = fluid.Executor(place)
 exe.run(fluid.default_startup_program())
 
 feeder = fluid.DataFeeder(feed_list=[image, label],
 place=place)
 
 model_save_dir = "model/fruits/"
 costs = []
 accs = []
 times = 0
 batches = []
 
 
 for pass_id in range(40):
 train_cost = 0
 for batch_id, data in enumerate(batch_train_reader()):
 times += 1
 train_cost, train_acc = exe.run(program=fluid.default_main_program(),
 feed=feeder.feed(data),
 fetch_list=[avg_cost, accuracy])
 if batch_id % 20 == 0:
 print("pass_id:%d, step:%d, cost:%f, acc:%f" %
 (pass_id, batch_id, train_cost[0], train_acc[0]))
 accs.append(train_acc[0])
 costs.append(train_cost[0])
 batches.append(times)
 
 
 if not os.path.exists(model_save_dir):
 os.makedirs(model_save_dir)
 fluid.io.save_inference_model(dirname=model_save_dir,
 feeded_var_names=["image"],
 target_vars=[predict],
 executor=exe)
 print("训练保存模型完成!")
 
 
 plt.title("training", fontsize=24)
 plt.xlabel("iter", fontsize=20)
 plt.ylabel("cost/acc", fontsize=20)
 plt.plot(batches, costs, color='red', label="Training Cost")
 plt.plot(batches, accs, color='green', label="Training Acc")
 plt.legend()
 plt.grid()
 plt.savefig("train.png")
 plt.show()
 
 |