朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生. 朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等.

概率

定义

概率是反映随机事件出现的可能性大小. 随机事件是指在相同条件下,可能出现也可能不出现的事件. 例如:

(1)抛一枚硬币,可能正面朝上,可能反面朝上,这是随机事件. 正/反面朝上的可能性称为概率;

(2)掷骰子,掷出的点数为随机事件. 每个点数出现的可能性称为概率;

(3)一批商品包含良品、次品,随机抽取一件,抽得良品/次品为随机事件. 经过大量反复试验,抽得次品率越来越接近于某个常数,则该常数为概率.

我们可以将随机事件记为A或B,则P(A), P(B)表示事件A或B的概率.

联合概率与条件概率

① 联合概率

指包含多个条件且所有条件同时成立的概率,记作$P ( A , B )$ ,或$P(AB)$,或$P(A \bigcap B)$

② 条件概率

已知事件B发生的条件下,另一个事件A发生的概率称为条件概率,记为:$P(A|B)$

p(下雨|阴天)

③ 事件的独立性

事件A不影响事件B的发生,称这两个事件独立,记为:
$$
P(AB)=P(A)P(B)
$$
因为A和B不相互影响,则有:
$$
P(A|B) = P(A)
$$
可以理解为,给定或不给定B的条件下,A的概率都一样大.

先验概率与后验概率

① 先验概率

先验概率也是根据以往经验和分析得到的概率,例如:在没有任何信息前提的情况下,猜测对面来的陌生人姓氏,姓李的概率最大(因为全国李姓为占比最高的姓氏),这便是先验概率.

② 后验概率

后验概率是指在接收了一定条件或信息的情况下的修正概率,例如:在知道对面的人来自“牛家村”的情况下,猜测他姓牛的概率最大,但不排除姓杨、李等等,这便是后验概率.

③ 两者的关系

事情还没有发生,求这件事情发生的可能性的大小,是先验概率(可以理解为由因求果). 事情已经发生,求这件事情发生的原因是由某个因素引起的可能性的大小,是后验概率(由果求因). 先验概率与后验概率有不可分割的联系,后验概率的计算要以先验概率为基础.

贝叶斯定理

定义

贝叶斯定理由英国数学家托马斯.贝叶斯 ( Thomas Bayes)提出,用来描述两个条件概率之间的关系,定理描述为:
$$
P(A|B) = \frac{P(A)P(B|A)}{P(B)}
$$
其中,$P(A)$和$P(B)$是A事件和B事件发生的概率. $P(A|B)$称为条件概率,表示B事件发生条件下,A事件发生的概率. 推导过程:
$$
P(A,B) =P(B)P(A|B)\
P(B,A) =P(A)P(B|A)
$$
其中$P(A,B)$称为联合概率,指事件B发生的概率,乘以事件A在事件B发生的条件下发生的概率. 因为$P(A,B)=P(B,A)$, 所以有:
$$
P(B)P(A|B)=P(A)P(B|A)
$$
两边同时除以P(B),则得到贝叶斯定理的表达式. 其中,$P(A)$是先验概率,$P(A|B)$是已知B发生后A的条件概率,也被称作后验概率.

贝叶斯定理示例

【示例一】计算诈骗短信的概率

事件 概率 表达式
所有短信中,诈骗短信 5% P(A)= 0.05
所有短信中,含有“中奖”两个字 4% P(B)= 0.04
所有短信中,是诈骗短信,并且含有“中奖”两个字 50% P(B|A) = 0.5

求:收到一条新信息,含有“中奖”两个字,是诈骗短信的概率?

$P(A|B) = P(A) P(B|A) / P(B) = 0.05 * 0.5 / 0.04 = 0.625$

【示例二】计算喝酒驾车的概率

事件 概率 表达式
所有客人中,驾车 20% P(A)= 0.2
所有客人中,喝酒 10% P(B)= 0.1
所有客人中,开车并且喝酒 5% P(B|A)= 0.05

求:喝过酒仍然会开车的人的比例是多少?

$P(A|B) = P(A) P(B|A) / P(B) = 0.2 * 0.05 / 0.1 = 0.1$

假设一个学校中 60%的男生 和40%的女生

女生穿裤子的人数和穿裙子的人数相等

所有的男生都穿裤子
一个人随机在远处眺望,看一个穿裤子的学生

请问这个学生是女生的概率

p(女) = 0.4

p(裤子|女) = 0.5

p(裤子) = 0.8

P(女|裤子) = 0.4 * 0.5 / 0.8 = 0.25

$$
P(A|B) = \frac{P(A)P(B|A)}{P(B)}
$$

朴素贝叶斯分类器

分类原理

朴素贝叶斯分类器就是根据贝叶斯公式计算结果进行分类的模型,“朴素”指(假设)事件之间相互独立无影响. 例如:有如下数据集:

Text Category
A great game(一个伟大的比赛) Sports(体育运动)
The election was over(选举结束) Not sports(不是体育运动)
Very clean match(没内幕的比赛) Sports(体育运动)
A clean but forgettable game(一场难以忘记的比赛) Sports(体育运动)
It was a close election(这是一场势均力敌的选举) Not sports(不是体育运动)

求:”A very close game“ 是体育运动的概率?数学上表示为 P(Sports | a very close game)​. 根据贝叶斯定理,是运动的概率可以表示为:
$$
P(Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | sports) * P(sports)}{P(a \ very \ close \ game)}
$$
不是运动概率可以表示为:
$$
P(Not \ Sports | a \ very \ close \ game) = \frac{P(a \ very \ close \ game | Not \ sports) * P(Not \ sports)}{P(a \ very \ close \ game)}
$$
概率更大者即为分类结果. 由于分母相同,即比较分子谁更大即可. 我们只需统计”A very close game“ 多少次出现在Sports类别中,就可以计算出上述两个概率. 但是”A very close game“ 并没有出现在数据集中,所以这个概率为0,要解决这个问题,就假设每个句子的单词出现都与其它单词无关(事件独立即朴素的含义),所以,P(a very close game)可以写成:
$$
P(a \ very \ close \ game) = P(a) * P(very) * P(close) * P(game)
$$

$$
P(a \ very \ close \ game|Sports)= \ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports)
$$

统计出“a”, “very”, “close”, “game”出现在”Sports”类别中的概率,就能算出其所属的类别. 具体计算过程如下:

  • 第一步:计算总词频:Sports类别词语总数14,Not Sports类别词语总数9

  • 第二步:计算每个类别的先验概率

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    # Sports和Not Sports概率
    P(Sports) = 3 / 5 = 0.6
    P(Not Sports) = 2 / 5 = 0.4

    # Sports条件下各个词语概率
    P(a | Sports) = (2 + 1) / (11 + 14) = 0.12
    P(very | Sports) = (1 + 1) / (11 + 14) = 0.08
    P(close | Sports) = (0 + 1) / (11 + 14) = 0.04
    P(game | Sports) = (2 + 1) / (11 + 14) = 0.12

    # Not Sports条件下各个词语概率
    P(a | Not Sports) = (1 + 1) / (9 + 14) = 0.087
    P(very | Not Sports) = (0 + 1) / (9 + 14) = 0.043
    P(close | Not Sports) = (1 + 1) / (9 + 14) = = 0.087
    P(game | Not Sports) = (0 + 1) / (9 + 14) = 0.043

    其中,分子部分加1,是为了避免分子为0的情况;分母部分都加了词语总数14,是为了避免分子增大的情况下计算结果超过1的可能.

  • 第三步:将先验概率带入贝叶斯定理,计算概率:

    是体育运动的概率:

$$
P(a \ very \ close \ game|Sports)= \ P(a|Sports)*P(very|Sports)*P(close|Sports)*P(game|Sports)= \
0.12 * 0.08 * 0.04 * 0.12 = 0.00004608
$$

​ 不是体育运动的概率:
$$
P(a \ very \ close \ game|Not \ Sports)= \
P(a|Not \ Sports)*P(very|Not \ Sports)*P(close|Not \ Sports)*P(game|Not \ Sports)= \
0.087 * 0.043 * 0.087 * 0.043 = 0.000013996
$$
分类结果:P(Sports) = 0.00004608 , P(Not Sports) = 0.000013996, 是体育运动.

实现朴素贝叶斯分类器

在sklearn中,提供了三个朴素贝叶斯分类器,分别是:

  • GaussianNB(高斯朴素贝叶斯分类器):适合用于样本的值是连续的,数据呈正态分布的情况(比如人的身高、城市家庭收入、一次考试的成绩等等)
  • MultinominalNB(多项式朴素贝叶斯分类器):适合用于大部分属性为离散值的数据集
  • BernoulliNB(伯努利朴素贝叶斯分类器):适合用于特征值为二元离散值或是稀疏的多元离散值的数据集

该示例中,样本的值为连续值,且呈正态分布,所以采用GaussianNB模型. 代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# 朴素贝叶斯分类示例
import numpy as np
import sklearn.naive_bayes as nb
import matplotlib.pyplot as mp

# 输入,输出
x, y = [], []

# 读取数据文件
with open("../data/multiple1.txt", "r") as f:
for line in f.readlines():
data = [float(substr) for substr in line.split(",")]
x.append(data[:-1]) # 输入样本:取从第一列到倒数第二列
y.append(data[-1]) # 输出样本:取最后一列

x = np.array(x)
y = np.array(y, dtype=int)

# 创建高斯朴素贝叶斯分类器对象
model = nb.GaussianNB()
model.fit(x, y) # 训练

# 计算显示范围
left = x[:, 0].min() - 1
right = x[:, 0].max() + 1

buttom = x[:, 1].min() - 1
top = x[:, 1].max() + 1

grid_x, grid_y = np.meshgrid(np.arange(left, right, 0.01),
np.arange(buttom, top, 0.01))

mesh_x = np.column_stack((grid_x.ravel(), grid_y.ravel()))
mesh_z = model.predict(mesh_x)
mesh_z = mesh_z.reshape(grid_x.shape)

mp.figure('Naive Bayes Classification', facecolor='lightgray')
mp.title('Naive Bayes Classification', fontsize=20)
mp.xlabel('x', fontsize=14)
mp.ylabel('y', fontsize=14)
mp.tick_params(labelsize=10)
mp.pcolormesh(grid_x, grid_y, mesh_z, cmap='gray')
mp.scatter(x[:, 0], x[:, 1], c=y, cmap='brg', s=80)
mp.show()

执行结果:

总结

1)什么是朴素贝叶斯:朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。“朴素”的含义为:假设问题的特征变量都是相互独立地作用于决策变量的,即问题的特征之间都是互不相关的。

2)朴素贝叶斯分类的特点

① 优点

  • 逻辑性简单
  • 算法较为稳定。当数据呈现不同的特点时,朴素贝叶斯的分类性能不会有太大的差异。
  • 当样本特征之间的关系相对比较独立时,朴素贝叶斯分类算法会有较好的效果。

② 缺点

  • 特征的独立性在很多情况下是很难满足的,因为样本特征之间往往都存在着相互关联,如果在分类过程中出现这种问题,会导致分类的效果大大降低。

3)什么情况下使用朴素贝叶斯:根据先验概率计算后验概率的情况,且样本特征之间独立性较强,如NLP方向。