Mission, scenarios and behaviors

Task: Navigate the robot itself from the current position to final destination on the map, without human intervention.

Goal: find most efficient path (trajectory) in terms of time or distance travelled.

s11172411102022

s11173011102022

s11173811102022

s11175511102022

Example Common Behavior Sets

  • Speed tracking
  • Deceleration to stop
  • Stay stopped
  • Yield
  • Emergency stop

s11244911102022

Motion planning constraints

s11265111102022

Read more about vehicle dynamic.

s11291611102022

s11292911102022

s11315411102022

s11351911102022

s11365511102022

s11375711102022

s11404311102022

s11411311102022

s11412111102022

Objective functions in planning

s11413711102022

s11463011102022

s11465011102022

s11483111102022

s11495011102022

Supplementary Readings

  1. Motion Planning For Autonomous Vehicles Based On Sequential Optimization.
  2. The kinematic bicycle model: A consistent model for planning feasible trajectories for autonomous vehicles, 2017 IEEE Intelligent Vehicles Symposium (IV), 2017. Gives an overview of the kinematic
    bicycle model.
  3. Steven M Lavalle, Planning Algorithms, 2006, Cambridge University Press. Chapter 2 covers discrete planning over graphs including Dijkstra’s, A* and STRIPS etc.

Origin: Dr. Chris Lu (Homepage)
Translate + Edit: YangSier (Homepage)

:four_leaf_clover:碎碎念:four_leaf_clover:
Hello米娜桑,这里是英国留学中的杨丝儿。我的博客的关键词集中在编程、算法、机器人、人工智能、数学等等,点个关注吧,持续高质量输出中。
:cherry_blossom:唠嗑QQ群兔叽的魔术工房 (942848525)
:star:B站账号白拾Official(活跃于知识区和动画区)